expansion.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. from __future__ import annotations
  2. import numpy as np
  3. from dataclasses import dataclass
  4. from functools import cached_property
  5. import functions as fn
  6. import quaternionic
  7. import spherical
  8. import time
  9. import copy
  10. Array = np.ndarray
  11. Quaternion = quaternionic.array
  12. class InvalidExpansion(Exception):
  13. pass
  14. @dataclass
  15. class Expansion:
  16. """Generic class for storing surface charge expansion coefficients."""
  17. l_array: Array
  18. coefs: Array
  19. _starting_coefs: Array = None # initialized with the __post_init__ method
  20. _rotations: Quaternion = Quaternion([1., 0., 0., 0.])
  21. def __post_init__(self):
  22. if self.coefs.shape[-1] != np.sum(2 * self.l_array + 1):
  23. raise InvalidExpansion('Number of expansion coefficients does not match the provided l_array.')
  24. if np.all(np.sort(self.l_array) != self.l_array) or np.all(np.unique(self.l_array) != self.l_array):
  25. raise InvalidExpansion('Array of l values should be unique and sorted.')
  26. self.coefs = self.coefs.astype(np.complex128)
  27. self._starting_coefs = np.copy(self.coefs)
  28. @property
  29. def max_l(self) -> int:
  30. return max(self.l_array)
  31. @cached_property
  32. def lm_arrays(self) -> (Array, Array):
  33. """Return l and m arrays containing all (l, m) pairs."""
  34. all_m_list = []
  35. for l in self.l_array:
  36. for i in range(2 * l + 1):
  37. all_m_list.append(-l + i)
  38. return np.repeat(self.l_array, 2 * self.l_array + 1), np.array(all_m_list)
  39. def repeat_over_m(self, arr: Array, axis=0) -> Array:
  40. if not arr.shape[axis] == len(self.l_array):
  41. raise ValueError('Array length should be equal to the number of l in the expansion.')
  42. return np.repeat(arr, 2 * self.l_array + 1, axis=axis)
  43. def rotate(self, rotations: Quaternion, rotate_existing=False):
  44. self._rotations = rotations
  45. coefs = self.coefs if rotate_existing else self._starting_coefs
  46. self.coefs = expansion_rotation(rotations, coefs, self.l_array)
  47. def rotate_euler(self, alpha: Array, beta: Array, gamma: Array, rotate_existing=False):
  48. R_euler = quaternionic.array.from_euler_angles(alpha, beta, gamma)
  49. self.rotate(R_euler, rotate_existing=rotate_existing)
  50. def clone(self) -> Expansion:
  51. return copy.deepcopy(self)
  52. class Expansion24(Expansion):
  53. def __init__(self, sigma2: float, sigma4: float, sigma0: float = 0.):
  54. l_array = np.array([0, 2, 4])
  55. coeffs = rot_sym_expansion(l_array, np.array([sigma0, sigma2, sigma4]))
  56. super().__init__(l_array, coeffs)
  57. class MappedExpansion(Expansion):
  58. def __init__(self, a_bar: float, kappaR: float, sigma_m: float, max_l: int = 20, sigma0: float = 0):
  59. l_array = np.array([l for l in range(max_l + 1) if l % 2 == 0])
  60. coeffs = (2 * sigma_m * fn.coeff_C_diff(l_array, kappaR)
  61. * np.sqrt(4 * np.pi * (2 * l_array + 1)) * np.power(a_bar, l_array))
  62. coeffs[0] = sigma0
  63. coeffs = rot_sym_expansion(l_array, coeffs)
  64. # coeffs = np.full((1000, len(coeffs)), coeffs)
  65. super().__init__(l_array, coeffs)
  66. def rot_sym_expansion(l_array: Array, coeffs: Array) -> Array:
  67. """Create full expansion array for rotationally symmetric distributions with only m=0 terms different form 0."""
  68. full_coeffs = np.zeros(np.sum(2 * l_array + 1))
  69. full_coeffs[np.cumsum(2 * l_array + 1) - l_array - 1] = coeffs
  70. return full_coeffs
  71. def coeffs_fill_missing_l(expansion: Expansion, target_l_array: Array) -> Expansion:
  72. missing_l = np.setdiff1d(target_l_array, expansion.l_array, assume_unique=True)
  73. fill = np.zeros(np.sum(2 * missing_l + 1))
  74. full_l_array1, _ = expansion.lm_arrays
  75. # we search for where to place missing coeffs with the help of a boolean array and argmax function
  76. comparison_bool = (full_l_array1[:, None] - missing_l[None, :]) > 0
  77. indices = np.where(np.any(comparison_bool, axis=0), np.argmax(comparison_bool, axis=0), full_l_array1.shape[0])
  78. new_coeffs = np.insert(expansion.coefs, np.repeat(indices, 2 * missing_l + 1), fill, axis=-1)
  79. return Expansion(target_l_array, new_coeffs)
  80. def expansions_to_common_l(ex1: Expansion, ex2: Expansion) -> (Expansion, Expansion):
  81. common_l_array = np.union1d(ex1.l_array, ex2.l_array)
  82. return coeffs_fill_missing_l(ex1, common_l_array), coeffs_fill_missing_l(ex2, common_l_array)
  83. def expansion_rotation(rotations: Quaternion, coefs: Array, l_array: Array):
  84. """
  85. General function for rotations of expansion coefficients using WignerD matrices. Combines all rotations
  86. with each expansion given in coefs array.
  87. :param rotations: Quaternion array, last dimension is 4
  88. :param coefs: array of expansion coefficients
  89. :param l_array: array of all ell values of the expansion
  90. :return rotated coefficients, output shape is rotations.shape[:-1] + coefs.shape
  91. """
  92. rot_arrays = rotations.ndarray.reshape((-1, 4))
  93. coefs_reshaped = coefs.reshape((-1, coefs.shape[-1]))
  94. wigner_matrices = spherical.Wigner(np.max(l_array)).D(rot_arrays)
  95. new_coefs = np.zeros((rot_arrays.shape[0],) + coefs_reshaped.shape, dtype=np.complex128)
  96. for i, l in enumerate(l_array):
  97. Dlmn_slice = np.arange(l * (2 * l - 1) * (2 * l + 1) / 3, (l + 1) * (2 * l + 1) * (2 * l + 3) / 3).astype(int)
  98. all_m_indices = np.arange(np.sum(2 * l_array[:i] + 1), np.sum(2 * l_array[:i + 1] + 1))
  99. wm = wigner_matrices[:, Dlmn_slice].reshape((-1, 2*l+1, 2*l+1))
  100. new_coefs[..., all_m_indices] = np.einsum('rmn, qm -> rqn',
  101. wm, coefs_reshaped[:, all_m_indices])
  102. return new_coefs.reshape(rotations.ndarray.shape[:-1] + coefs.shape)
  103. if __name__ == '__main__':
  104. ex = MappedExpansion(0.44, 3, 1, 10)
  105. print(ex.coefs)
  106. # new_coeffs = expansion_rotation(Quaternion(np.arange(20).reshape(5, 4)).normalized, ex.coeffs, ex.l_array)
  107. # print(new_coeffs.shape)
  108. #
  109. # newnew_coeffs = expansion_rotation(Quaternion(np.arange(16).reshape(4, 4)).normalized, new_coeffs, ex.l_array)
  110. # print(newnew_coeffs.shape)
  111. rot_angles = np.linspace(0, np.pi, 1000)
  112. t0 = time.time()
  113. ex.rotate_euler(rot_angles, rot_angles, rot_angles)
  114. t1 = time.time()
  115. print(ex.coefs.shape)
  116. print(t1 - t0)