123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- import expansion
- import parameters
- import functions as fn
- from py3nj import wigner3j
- import numpy as np
- import time
- from typing import Literal
- import units_and_constants as uc
- Array = np.ndarray
- Expansion = expansion.Expansion
- ModelParams = parameters.ModelParams
- EnergyUnit = Literal['kT', 'eV', 'J']
- def energy_units(units: EnergyUnit, params: ModelParams) -> float:
- match units:
- case 'eV':
- return 1 / (uc.CONSTANTS.e0 * uc.UNITS.voltage)
- case 'kT':
- return 1 / (params.temperature * uc.CONSTANTS.Boltzmann)
- case 'J':
- return uc.UNITS.energy
- def charged_shell_energy(ex1: Expansion, ex2: Expansion, dist: float, params: ModelParams, units: EnergyUnit = 'kT'):
- ex1, ex2 = expansion.expansions_to_common_l(ex1, ex2)
- dist = dist * params.R
- full_l_array, full_m_array = ex1.lm_arrays
- # determine indices of relevant elements in the sum
- indices_l, indices_p = np.nonzero(full_m_array[:, None] == full_m_array[None, :])
- flat_l = full_l_array[indices_l]
- flat_p = full_l_array[indices_p]
- flat_m = full_m_array[indices_l] # the same as full_m_array[indices_p]
- charge_factor = np.real(ex1.coefs[..., indices_l] * np.conj(ex2.coefs[..., indices_p]) +
- (-1) ** (flat_l + flat_p) * ex1.coefs[..., indices_p] * np.conj(ex2.coefs[..., indices_l]))
- all_s_array = np.arange(2 * ex1.max_l + 1)
- bessels = fn.sph_bessel_k(all_s_array, params.kappa * dist)
- # additional selection that excludes terms where Wigner 3j symbols are 0 by definition
- s_bool1 = np.abs(flat_l[:, None] - all_s_array[None, :]) <= flat_p[:, None]
- s_bool2 = flat_p[:, None] <= (flat_l[:, None] + all_s_array[None, :])
- indices_lpm, indices_s = np.nonzero(s_bool1 * s_bool2)
- l_vals = flat_l[indices_lpm]
- p_vals = flat_p[indices_lpm]
- m_vals = flat_m[indices_lpm]
- s_vals = all_s_array[indices_s]
- bessel_vals = bessels[indices_s]
- # While all other arrays are 1D, this one can have extra leading axes corresponding to leading dimensions
- # of expansion coefficients. The last dimension is the same as other arrays.
- charge_vals = charge_factor[..., indices_lpm]
- lps_terms = (2 * s_vals + 1) * np.sqrt((2 * l_vals + 1) * (2 * p_vals + 1))
- # the same combination of l, s, and p is repeated many times
- _, unique_indices1, inverse1 = np.unique(np.stack((l_vals, s_vals, p_vals)),
- axis=1, return_inverse=True, return_index=True)
- wigner1 = wigner3j(2 * l_vals[unique_indices1], 2 * s_vals[unique_indices1], 2 * p_vals[unique_indices1],
- 0, 0, 0)[inverse1]
- # all the combinations (l, s, p, m) are unique
- wigner2 = wigner3j(2 * l_vals, 2 * s_vals, 2 * p_vals,
- -2 * m_vals, 0, 2 * m_vals)
- constants = params.R ** 2 / (params.kappa * params.epsilon * uc.CONSTANTS.epsilon0) * energy_units(units, params)
- C_vals = fn.interaction_coeff_C(l_vals, p_vals, params.kappaR)
- lspm_vals = C_vals * (-1) ** (l_vals + m_vals) * lps_terms * bessel_vals * wigner1 * wigner2
- broadcasted_lspm_vals = np.broadcast_to(lspm_vals, charge_vals.shape)
- return 0.5 * constants * np.sum(broadcasted_lspm_vals * charge_vals, axis=-1)
- if __name__ == '__main__':
- params = ModelParams(R=150, kappaR=3)
- ex1 = expansion.MappedExpansionQuad(0.44, params.kappaR, 0.001, max_l=20)
- ex2 = ex1.clone()
- dist = 2.
- # ex1, ex2 = expansions_to_common_l(ex1, ex2)
- # print(ex1.coeffs)
- # print(ex2.coeffs)
- t0 = time.perf_counter()
- energy = charged_shell_energy(ex1, ex2, dist, params)
- t1 = time.perf_counter()
- print('energy: ', energy)
- print('time: ', t1 - t0)
- # plt.plot(energy)
- # plt.show()
|