higher_multipole_matching.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129
  1. from analysis.peak_heigth import *
  2. Array = np.ndarray
  3. Expansion = expansion.Expansion
  4. RotConfig = Literal['ep', 'pp', 'sep']
  5. def get_kappaR_higher_multipole_dicts(peak: Peak, params: ModelParams, emanuele_data: Array, abar: float,
  6. kappaR: Array, dist_cs: list, max_kappaR: float = 50, min_kappa: float = 0.01,
  7. only_loaded: bool = False):
  8. correct_abar_indices, = np.nonzero(np.isclose(emanuele_data[:, 1], abar))
  9. emanuele_data = emanuele_data[correct_abar_indices]
  10. distances, inverse = np.unique(emanuele_data[:, 0], return_inverse=True)
  11. energy_fn = mapping.parameter_map_two_expansions(interactions.charged_shell_energy,
  12. peak.kappaR_axis_in_expansion)
  13. energy = []
  14. for d in dist_cs:
  15. if not only_loaded:
  16. energy.append(energy_fn(peak.ex1, peak.ex2, params, dist=d))
  17. else:
  18. energy.append(np.full((len(kappaR),), 1.))
  19. data_dict_ic = {}
  20. data_dict_cs = {}
  21. k = 0
  22. for i in range(len(distances)):
  23. d = np.around(distances[i], 5)
  24. if d in np.around(dist_cs, 5):
  25. idx, = np.nonzero(inverse == i)
  26. relevant_kR_indices = (emanuele_data[idx, 2] <= max_kappaR) * (min_kappa <= emanuele_data[idx, 2])
  27. kR = emanuele_data[idx, 2][relevant_kR_indices]
  28. en = emanuele_data[idx, peak.ici_data_column][relevant_kR_indices]
  29. sort = np.argsort(kR)
  30. if peak.log_y:
  31. data_dict_ic[d] = np.stack((kR[sort], np.abs(en)[sort])).T
  32. data_dict_cs[d] = np.stack((kappaR, np.abs(energy[k]))).T
  33. else:
  34. data_dict_ic[d] = np.stack((kR[sort], en[sort])).T
  35. data_dict_cs[d] = np.stack((kappaR, energy[k])).T
  36. k += 1
  37. return data_dict_ic, data_dict_cs
  38. def IC_peak_energy_plot(dist: list,
  39. which: RotConfig,
  40. abar=0.8,
  41. min_kappaR: float = 0.01,
  42. max_kappaR: float = 50.,
  43. R: float = 150,
  44. save_as: Path = None,
  45. save_data: bool = False,
  46. quad_correction: bool = False,
  47. log_y: bool = True):
  48. # em_data_path = (ICI_DATA_PATH.joinpath("FIG_11"))
  49. em_data_path = (ICI_DATA_PATH.joinpath("TEST_HIGHER_MULTIPOLES"))
  50. em_data = np.load(em_data_path.joinpath("higher_multiplot_energy_2.npz"))
  51. data2 = em_data['L2']
  52. data4 = em_data['L4']
  53. data6 = em_data['L6']
  54. num = 100 if which == 'sep' else 30
  55. kappaR = np.geomspace(min_kappaR, max_kappaR, num)
  56. params = ModelParams(R=R, kappaR=kappaR)
  57. ex = charge_distributions.create_mapped_quad_expansion(abar, params.kappaR, 0.00099, l_max=20)
  58. if which == 'ep':
  59. peak = PeakEP(ex, log_y, kappaR_axis_in_expansion=0)
  60. elif which == 'pp':
  61. peak = PeakPP(ex, log_y, kappaR_axis_in_expansion=0)
  62. elif which == 'sep':
  63. peak = PeakSEP(ex, log_y, kappaR_axis_in_expansion=0)
  64. else:
  65. raise ValueError
  66. data_dict_ic2, data_dict_cs = get_kappaR_higher_multipole_dicts(peak, params, data2,abar, kappaR, dist, max_kappaR, min_kappaR)
  67. data_dict_ic4, _ = get_kappaR_higher_multipole_dicts(peak, params, data4, abar, kappaR, dist, max_kappaR, min_kappaR)
  68. data_dict_ic6, _ = get_kappaR_higher_multipole_dicts(peak, params, data6, abar, kappaR, dist, max_kappaR, min_kappaR)
  69. colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color'])
  70. fig = plt.figure(figsize=(2, 2))
  71. gs = gridspec.GridSpec(1, 1, figure=fig)
  72. gs.update(left=0.25, right=0.95, top=0.9, bottom=0.21)
  73. ax = fig.add_subplot(gs[0, 0])
  74. for (key, data2), data_cs, data4, data6 in zip(data_dict_ic2.items(), data_dict_cs.values(), data_dict_ic4.values(), data_dict_ic6.values()):
  75. current_color = next(colors)
  76. ax.plot(data2[:, 0], data2[:, 1], label=r'$l=2$', c=current_color)
  77. ax.plot(data_cs[:, 0], data_cs[:, 1], ls='--', c='k')
  78. ax.plot(data4[:, 0], data4[:, 1], ls='-', c=next(colors), label=r'$l=4$')
  79. ax.plot(data6[:, 0], data6[:, 1], ls='-', c=next(colors), label=r'$l=6$')
  80. ax.legend(fontsize=9, ncol=1, frameon=False, handlelength=0.7, loc='upper right',
  81. bbox_to_anchor=(0.5, 0.5),
  82. # bbox_to_anchor=(0.42, 0.9)
  83. )
  84. ax.set_title(f'$\\bar a = {abar:.1f}$, $\\rho = {key:.1f}$', loc='center',
  85. # x=0.95, y=0.8,
  86. y=0.96,
  87. # fontsize=9
  88. )
  89. ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=11)
  90. ax.set_xlabel(r'$\kappa R$', fontsize=11)
  91. ax.set_ylabel(peak.y_label, fontsize=11)
  92. if log_y:
  93. ax.set_yscale('log')
  94. ax.set_xscale('log')
  95. # plt.tight_layout()
  96. if save_as is not None:
  97. plt.savefig(save_as, dpi=300)
  98. plt.show()
  99. if __name__ == '__main__':
  100. dist = [3.]
  101. IC_peak_energy_plot(abar=0.5, dist=dist, which='pp', min_kappaR=0.1, max_kappaR=50,
  102. save_as=FIGURES_PATH.joinpath("ICi_data").joinpath("peak_pp_kappaR_higher_correction_abar05_rho30.png"),
  103. save_data=False,
  104. quad_correction=False,
  105. log_y=False
  106. )