config.toml 729 B

12345678910111213141516171819202122232425262728293031
  1. [paths]
  2. mri_data = '/data/data_wnx1/_Data/AlzheimersDL/CNN+RNN-2class-1cnn+data/PET_volumes_customtemplate_float32/'
  3. xls_data = '/export/home/nschense/alzheimers/alzheimers_nn/LP_ADNIMERGE.csv'
  4. #CHANGE THESE BEFORE RUNNING
  5. model_output = '/export/home/nschense/alzheimers/alzheimers_nn/saved_models/'
  6. [training]
  7. device = 'cuda:1'
  8. runs = 10
  9. max_epochs = 10
  10. [dataset]
  11. validation_split = 0.3
  12. [model]
  13. name = 'cnn-ensemble10x10'
  14. image_channels = 1
  15. clin_data_channels = 2
  16. [hyperparameters]
  17. batch_size = 32
  18. learning_rate = 0.0001
  19. droprate = 0.5
  20. [operation]
  21. silent = false
  22. [ensemble]
  23. name = 'cnn-ensemble10x10'
  24. prune_threshold = 0.7 # Any models with accuracy below this threshold will be pruned, set to 0 to disable pruning