|
@@ -0,0 +1,302 @@
|
|
|
+from __future__ import annotations
|
|
|
+import numpy as np
|
|
|
+from dataclasses import dataclass
|
|
|
+from functools import cached_property
|
|
|
+import charged_shells.functions as fn
|
|
|
+import quaternionic
|
|
|
+import spherical
|
|
|
+import copy
|
|
|
+from scipy.special import eval_legendre
|
|
|
+
|
|
|
+
|
|
|
+Array = np.ndarray
|
|
|
+Quaternion = quaternionic.array
|
|
|
+
|
|
|
+
|
|
|
+class InvalidExpansion(Exception):
|
|
|
+ pass
|
|
|
+
|
|
|
+
|
|
|
+@dataclass
|
|
|
+class Expansion:
|
|
|
+ """Generic class for storing surface charge expansion coefficients."""
|
|
|
+
|
|
|
+ l_array: Array
|
|
|
+ coefs: Array
|
|
|
+ _starting_coefs: Array = None # initialized with the __post_init__ method
|
|
|
+ _rotations: Quaternion = Quaternion([1., 0., 0., 0.])
|
|
|
+
|
|
|
+ def __post_init__(self):
|
|
|
+ if self.coefs.shape[-1] != np.sum(2 * self.l_array + 1):
|
|
|
+ raise InvalidExpansion('Number of expansion coefficients does not match the provided l_array.')
|
|
|
+ if np.all(np.sort(self.l_array) != self.l_array) or np.all(np.unique(self.l_array) != self.l_array):
|
|
|
+ raise InvalidExpansion('Array of l values should be unique and sorted.')
|
|
|
+ self.coefs = self.coefs.astype(np.complex128)
|
|
|
+ self._starting_coefs = np.copy(self.coefs)
|
|
|
+
|
|
|
+ def __getitem__(self, item):
|
|
|
+ return Expansion(self.l_array, self.coefs[item])
|
|
|
+
|
|
|
+ @property
|
|
|
+ def max_l(self) -> int:
|
|
|
+ return max(self.l_array)
|
|
|
+
|
|
|
+ @property
|
|
|
+ def shape(self):
|
|
|
+ return self.coefs.shape[:-1]
|
|
|
+
|
|
|
+ def flatten(self) -> Expansion:
|
|
|
+ new_expansion = self.clone() # np.ndarray.flatten() also copies the array
|
|
|
+ new_expansion.coefs = new_expansion.coefs.reshape(-1, new_expansion.coefs.shape[-1])
|
|
|
+ new_expansion._rotations = new_expansion._rotations.reshape(-1, 4)
|
|
|
+ return new_expansion
|
|
|
+
|
|
|
+ def reshape(self, shape: tuple):
|
|
|
+ self.coefs = self.coefs.reshape(shape + (self.coefs.shape[-1],))
|
|
|
+ self._rotations = self._rotations.reshape(shape + (4,))
|
|
|
+
|
|
|
+ @cached_property
|
|
|
+ def lm_arrays(self) -> (Array, Array):
|
|
|
+ """Return l and m arrays containing all (l, m) pairs."""
|
|
|
+ return full_lm_arrays(self.l_array)
|
|
|
+
|
|
|
+ def repeat_over_m(self, arr: Array, axis=0) -> Array:
|
|
|
+ if not arr.shape[axis] == len(self.l_array):
|
|
|
+ raise ValueError('Array length should be equal to the number of l in the expansion.')
|
|
|
+ return np.repeat(arr, 2 * self.l_array + 1, axis=axis)
|
|
|
+
|
|
|
+ def rotate(self, rotations: Quaternion, rotate_existing=False):
|
|
|
+ # TODO: rotations are currently saved wrong if we start form existing coefficients not the og ones
|
|
|
+ self._rotations = rotations
|
|
|
+ coefs = self.coefs if rotate_existing else self._starting_coefs
|
|
|
+ self.coefs = expansion_rotation(rotations, coefs, self.l_array)
|
|
|
+
|
|
|
+ def rotate_euler(self, alpha: Array, beta: Array, gamma: Array, rotate_existing=False):
|
|
|
+ # TODO: additional care required on the convention used to transform euler angles to quaternions
|
|
|
+ # TODO: might be off for a minus sign for each? angle !!
|
|
|
+ R_euler = quaternionic.array.from_euler_angles(alpha, beta, gamma)
|
|
|
+ self.rotate(R_euler, rotate_existing=rotate_existing)
|
|
|
+
|
|
|
+ def charge_value(self, theta: Array | float, phi: Array | float):
|
|
|
+ if not isinstance(theta, Array):
|
|
|
+ theta = np.array([theta])
|
|
|
+ if not isinstance(phi, Array):
|
|
|
+ phi = np.array([phi])
|
|
|
+ theta, phi = np.broadcast_arrays(theta, phi)
|
|
|
+ full_l_array, full_m_array = self.lm_arrays
|
|
|
+ return np.squeeze(np.real(np.sum(self.coefs[..., None] * fn.sph_harm(full_l_array[:, None],
|
|
|
+ full_m_array[:, None],
|
|
|
+ theta[None, :], phi[None, :]), axis=-2)))
|
|
|
+
|
|
|
+ def clone(self) -> Expansion:
|
|
|
+ return copy.deepcopy(self)
|
|
|
+
|
|
|
+
|
|
|
+class Expansion24(Expansion):
|
|
|
+
|
|
|
+ def __init__(self, sigma2: float, sigma4: float, sigma0: float = 0.):
|
|
|
+ l_array = np.array([0, 2, 4])
|
|
|
+ coefs = rot_sym_expansion(l_array, np.array([sigma0, sigma2, sigma4]))
|
|
|
+ super().__init__(l_array, coefs)
|
|
|
+
|
|
|
+
|
|
|
+class MappedExpansionQuad(Expansion):
|
|
|
+ """Expansion that matches the outside potential of a quadrupolar impermeable particle with point charges inside."""
|
|
|
+
|
|
|
+ def __init__(self,
|
|
|
+ a_bar: Array | float,
|
|
|
+ kappaR: Array | float,
|
|
|
+ sigma_tilde: float,
|
|
|
+ l_max: int = 20,
|
|
|
+ sigma0: float | Array = 0):
|
|
|
+ """
|
|
|
+ :param a_bar: distance between the center and off center charges
|
|
|
+ :param kappaR: screening parameter
|
|
|
+ :param sigma_tilde: magnitude of off-center charges / 4pi R^2
|
|
|
+ :param l_max: maximal ell value for the expansion
|
|
|
+ :param sigma0: total (mean) charge density
|
|
|
+ """
|
|
|
+ a_bar, kappaR = np.broadcast_arrays(a_bar, kappaR)
|
|
|
+
|
|
|
+ l_array = np.array([l for l in range(l_max + 1) if l % 2 == 0])
|
|
|
+ a_bar, kappaR, l_array_expanded = np.broadcast_arrays(a_bar[..., None],
|
|
|
+ kappaR[..., None],
|
|
|
+ l_array[None, :])
|
|
|
+
|
|
|
+ coefs = (2 * sigma_tilde * fn.coef_C_diff(l_array_expanded, kappaR)
|
|
|
+ * np.sqrt(4 * np.pi * (2 * l_array_expanded + 1)) * np.power(a_bar, l_array_expanded))
|
|
|
+ coefs = np.squeeze(rot_sym_expansion(l_array, coefs))
|
|
|
+ coefs = expansion_total_charge(coefs, sigma0)
|
|
|
+ super().__init__(l_array, coefs)
|
|
|
+
|
|
|
+
|
|
|
+class GaussianCharges(Expansion):
|
|
|
+ """Expansion for a collection of smeared charges on the sphere."""
|
|
|
+
|
|
|
+ def __init__(self, omega_k: Array, lambda_k: Array | float, sigma1: float, l_max: int,
|
|
|
+ sigma0: float | Array = 0, equal_charges: bool = True):
|
|
|
+ """
|
|
|
+ :param omega_k: array of positions (theta, phi) of all charges
|
|
|
+ :param lambda_k: smear parameter for each charge or smear for different cases (if equal_charges = True)
|
|
|
+ :param sigma1: scaling
|
|
|
+ :param l_max: maximal ell value for the expansion
|
|
|
+ :param sigma0: total (mean) charge density
|
|
|
+ :param equal_charges: if this is False, length of lambda_k should be N. If True, theta0_k array will be treated
|
|
|
+ as different expansion cases
|
|
|
+ """
|
|
|
+ omega_k = omega_k.reshape(-1, 2)
|
|
|
+ if not isinstance(lambda_k, Array):
|
|
|
+ lambda_k = np.array([lambda_k])
|
|
|
+ if equal_charges:
|
|
|
+ if lambda_k.ndim > 1:
|
|
|
+ raise ValueError(f'If equal_charges=True, lambda_k should be a 1D array, got shape {lambda_k.shape}')
|
|
|
+ lambda_k = np.full((omega_k.shape[0], lambda_k.shape[0]), lambda_k).T
|
|
|
+ if lambda_k.shape[-1] != omega_k.shape[0]:
|
|
|
+ raise ValueError("Number of charges (length of omega_k) should match the last dimension of lambda_k array.")
|
|
|
+ lambda_k = lambda_k.reshape(-1, omega_k.shape[0])
|
|
|
+ l_array = np.arange(l_max + 1)
|
|
|
+ full_l_array, full_m_array = full_lm_arrays(l_array)
|
|
|
+ theta_k = omega_k[:, 0]
|
|
|
+ phi_k = omega_k[:, 1]
|
|
|
+ summands = (lambda_k[:, None, :] / np.sinh(lambda_k[:, None, :])
|
|
|
+ * fn.sph_bessel_i(full_l_array[None, :, None], lambda_k[:, None, :])
|
|
|
+ * np.conj(fn.sph_harm(full_l_array[None, :, None], full_m_array[None, :, None],
|
|
|
+ theta_k[None, None, :], phi_k[None, None, :])))
|
|
|
+ coefs = np.squeeze(4 * np.pi * sigma1 * np.sum(summands, axis=-1))
|
|
|
+ coefs = expansion_total_charge(coefs, sigma0)
|
|
|
+ l_array, coefs = purge_unneeded_l(l_array, coefs)
|
|
|
+ super().__init__(l_array, coefs)
|
|
|
+
|
|
|
+
|
|
|
+class SphericalCap(Expansion):
|
|
|
+ """Expansion for a collection of spherical caps."""
|
|
|
+
|
|
|
+ def __init__(self, omega_k: Array, theta0_k: Array | float, sigma1: float, l_max: int, sigma0: float | Array = 0,
|
|
|
+ equal_sizes: bool = True):
|
|
|
+ """
|
|
|
+ :param omega_k: array of positions (theta, phi) of all spherical caps
|
|
|
+ :param theta0_k: sizes of each spherical caps or cap sizes for different cases (if equal_sizes = True)
|
|
|
+ :param sigma1: charge magnitude for the single cap, currently assumes that this is equal for all caps
|
|
|
+ :param l_max: maximal ell value for the expansion
|
|
|
+ :param sigma0: total (mean) charge density
|
|
|
+ :param equal_sizes: if this is False, length of theta0_k should be N. If True, theta0_k array will be treated as
|
|
|
+ different expansion cases
|
|
|
+ """
|
|
|
+ omega_k = omega_k.reshape(-1, 2)
|
|
|
+ if not isinstance(theta0_k, Array):
|
|
|
+ theta0_k = np.array(theta0_k)
|
|
|
+ if equal_sizes:
|
|
|
+ if theta0_k.ndim == 0:
|
|
|
+ theta0_k = np.full(omega_k.shape[0], theta0_k)
|
|
|
+ elif theta0_k.ndim == 1:
|
|
|
+ theta0_k = np.full((omega_k.shape[0], theta0_k.shape[0]), theta0_k)
|
|
|
+ else:
|
|
|
+ raise ValueError(f'If equal_charges=True, theta0_k should be a 1D array, got shape {theta0_k.shape}')
|
|
|
+ if theta0_k.shape[0] != omega_k.shape[0]:
|
|
|
+ raise ValueError("Number of charges (length of omega_k) should match the last dimension of theta0_k array.")
|
|
|
+ rotations = Quaternion(np.stack((np.cos(omega_k[..., 0] / 2),
|
|
|
+ np.sin(omega_k[..., 1]) * np.sin(omega_k[..., 0] / 2),
|
|
|
+ np.cos(omega_k[..., 1]) * np.sin(omega_k[..., 0] / 2),
|
|
|
+ np.zeros_like(omega_k[..., 0]))).T)
|
|
|
+ l_array = np.arange(l_max + 1)
|
|
|
+ coefs_l0 = -sigma1 * (np.sqrt(np.pi / (2 * l_array[None, :] + 1)) *
|
|
|
+ (eval_legendre(l_array[None, :] + 1, np.cos(theta0_k[..., None]))
|
|
|
+ - eval_legendre(l_array[None, :] - 1, np.cos(theta0_k[..., None]))))
|
|
|
+ coefs = rot_sym_expansion(l_array, coefs_l0)
|
|
|
+ coefs_all_single_caps = expansion_rotation(rotations, coefs, l_array)
|
|
|
+ # Rotating is implemented in such a way that it rotates every patch to every position,
|
|
|
+ # hence the redundancy of out of diagonal elements.
|
|
|
+ coefs_all = np.sum(np.diagonal(coefs_all_single_caps), axis=-1)
|
|
|
+ coefs_all = expansion_total_charge(coefs_all, sigma0)
|
|
|
+ super().__init__(l_array, np.squeeze(coefs_all))
|
|
|
+
|
|
|
+
|
|
|
+def full_lm_arrays(l_array: Array) -> (Array, Array):
|
|
|
+ """From an array of l_values get arrays of ell and m that give you all pairs (ell, m)."""
|
|
|
+ all_m_list = []
|
|
|
+ for l in l_array:
|
|
|
+ for i in range(2 * l + 1):
|
|
|
+ all_m_list.append(-l + i)
|
|
|
+ return np.repeat(l_array, 2 * l_array + 1), np.array(all_m_list)
|
|
|
+
|
|
|
+
|
|
|
+def rot_sym_expansion(l_array: Array, coefs: Array) -> Array:
|
|
|
+ """Create full expansion array for rotationally symmetric distributions with only m=0 terms different form 0."""
|
|
|
+ full_coefs = np.zeros(coefs.shape[:-1] + (np.sum(2 * l_array + 1),))
|
|
|
+ full_coefs[..., np.cumsum(2 * l_array + 1) - l_array - 1] = coefs
|
|
|
+ return full_coefs
|
|
|
+
|
|
|
+
|
|
|
+def expansion_total_charge(coefs: Array, sigma0: float | Array):
|
|
|
+ """Adds a new axis to the expansion coefficients that modifies expansion based on given net charge density."""
|
|
|
+ if sigma0 is None:
|
|
|
+ return coefs
|
|
|
+ if not isinstance(sigma0, Array):
|
|
|
+ x = copy.deepcopy(coefs)
|
|
|
+ x[..., 0] = sigma0 / np.sqrt(4 * np.pi)
|
|
|
+ return x
|
|
|
+ sigma0 = sigma0.flatten()
|
|
|
+ x = np.repeat(np.expand_dims(coefs, -2), len(sigma0), axis=-2)
|
|
|
+ x[..., 0] = sigma0 / np.sqrt(4 * np.pi)
|
|
|
+ return x
|
|
|
+
|
|
|
+
|
|
|
+def m_indices_at_l(l_arr: Array, l_idx: int):
|
|
|
+ """
|
|
|
+ For a given l_array and index l_idx for some ell in this array, get indices of all (ell, m) coefficients
|
|
|
+ in coefficients array.
|
|
|
+ """
|
|
|
+ return np.arange(np.sum(2 * l_arr[:l_idx] + 1), np.sum(2 * l_arr[:l_idx+1] + 1))
|
|
|
+
|
|
|
+
|
|
|
+def purge_unneeded_l(l_array: Array, coefs: Array) -> (Array, Array):
|
|
|
+ """Remove ell values from expansion for which all (ell, m) coefficients are zero."""
|
|
|
+ def delete_zero_entries(l, l_arr, cfs):
|
|
|
+ l_idx = np.where(l_arr == l)[0][0]
|
|
|
+ m_indices = m_indices_at_l(l_arr, l_idx)
|
|
|
+ if np.all(cfs[..., m_indices] == 0):
|
|
|
+ return np.delete(l_arr, l_idx), np.delete(cfs, m_indices, axis=-1)
|
|
|
+ return l_arr, cfs
|
|
|
+ for l in l_array:
|
|
|
+ l_array, coefs = delete_zero_entries(l, l_array, coefs)
|
|
|
+ return l_array, coefs
|
|
|
+
|
|
|
+
|
|
|
+def coefs_fill_missing_l(expansion: Expansion, target_l_array: Array) -> Expansion:
|
|
|
+ """Explicitly add missing expansion coefficients so that expansion includes all ell values from the target array."""
|
|
|
+ missing_l = np.setdiff1d(target_l_array, expansion.l_array, assume_unique=True)
|
|
|
+ fill = np.zeros(np.sum(2 * missing_l + 1))
|
|
|
+ full_l_array1, _ = expansion.lm_arrays
|
|
|
+ # we search for where to place missing coefs with the help of a boolean array and argmax function
|
|
|
+ comparison_bool = (full_l_array1[:, None] - missing_l[None, :]) > 0
|
|
|
+ indices = np.where(np.any(comparison_bool, axis=0), np.argmax(comparison_bool, axis=0), full_l_array1.shape[0])
|
|
|
+ new_coefs = np.insert(expansion.coefs, np.repeat(indices, 2 * missing_l + 1), fill, axis=-1)
|
|
|
+ return Expansion(target_l_array, new_coefs)
|
|
|
+
|
|
|
+
|
|
|
+def expansions_to_common_l(ex1: Expansion, ex2: Expansion) -> (Expansion, Expansion):
|
|
|
+ """Explicitly add zero expansion coefficients so that both expansions include coefficients for the same ell."""
|
|
|
+ common_l_array = np.union1d(ex1.l_array, ex2.l_array)
|
|
|
+ return coefs_fill_missing_l(ex1, common_l_array), coefs_fill_missing_l(ex2, common_l_array)
|
|
|
+
|
|
|
+
|
|
|
+def expansion_rotation(rotations: Quaternion, coefs: Array, l_array: Array):
|
|
|
+ """
|
|
|
+ General function for rotations of expansion coefficients using WignerD matrices. Combines all rotations
|
|
|
+ with each expansion given in coefs array.
|
|
|
+ :param rotations: Quaternion array, last dimension is 4
|
|
|
+ :param coefs: array of expansion coefficients
|
|
|
+ :param l_array: array of all ell values of the expansion
|
|
|
+ :return rotated coefficients, output shape is rotations.shape[:-1] + coefs.shape
|
|
|
+ """
|
|
|
+ rot_arrays = rotations.ndarray.reshape((-1, 4))
|
|
|
+ coefs_reshaped = coefs.reshape((-1, coefs.shape[-1]))
|
|
|
+ wigner_matrices = spherical.Wigner(np.max(l_array)).D(rot_arrays)
|
|
|
+ new_coefs = np.zeros((rot_arrays.shape[0],) + coefs_reshaped.shape, dtype=np.complex128)
|
|
|
+ for i, l in enumerate(l_array):
|
|
|
+ Dlmn_slice = np.arange(l * (2 * l - 1) * (2 * l + 1) / 3, (l + 1) * (2 * l + 1) * (2 * l + 3) / 3).astype(int)
|
|
|
+ all_m_indices = m_indices_at_l(l_array, i)
|
|
|
+ wm = wigner_matrices[:, Dlmn_slice].reshape((-1, 2*l+1, 2*l+1))
|
|
|
+ new_coefs[..., all_m_indices] = np.einsum('rnm, qm -> rqn',
|
|
|
+ wm, coefs_reshaped[:, all_m_indices])
|
|
|
+ return new_coefs.reshape(rotations.ndarray.shape[:-1] + coefs.shape)
|